Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
f12(a, x) -> g12(x, x)
f12(x, a) -> g22(x, x)
f22(a, x) -> g12(x, x)
f22(x, a) -> g22(x, x)
g12(a, x) -> h11(x)
g12(x, a) -> h21(x)
g22(a, x) -> h11(x)
g22(x, a) -> h21(x)
h11(a) -> i
h21(a) -> i
e16(h11(w), h21(w), x, y, z, w) -> e26(x, x, y, z, z, w)
e16(x1, x1, x, y, z, a) -> e54(x1, x, y, z)
e26(f12(w, w), x, y, z, f22(w, w), w) -> e312(x, y, x, y, y, z, y, z, x, y, z, w)
e26(x, x, y, z, z, a) -> e63(x, y, z)
e26(i, x, y, z, i, a) -> e63(x, y, z)
e312(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z, w) -> e412(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z, w)
e312(x, y, x, y, y, z, y, z, x, y, z, a) -> e63(x, y, z)
e412(g12(w, w), x1, g22(w, w), x1, g12(w, w), x1, g22(w, w), x1, x, y, z, w) -> e16(x1, x1, x, y, z, w)
e412(i, x1, i, x1, i, x1, i, x1, x, y, z, a) -> e54(x1, x, y, z)
e412(x, x, x, x, x, x, x, x, x, x, x, a) -> e63(x, x, x)
e54(i, x, y, z) -> e63(x, y, z)
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f12(a, x) -> g12(x, x)
f12(x, a) -> g22(x, x)
f22(a, x) -> g12(x, x)
f22(x, a) -> g22(x, x)
g12(a, x) -> h11(x)
g12(x, a) -> h21(x)
g22(a, x) -> h11(x)
g22(x, a) -> h21(x)
h11(a) -> i
h21(a) -> i
e16(h11(w), h21(w), x, y, z, w) -> e26(x, x, y, z, z, w)
e16(x1, x1, x, y, z, a) -> e54(x1, x, y, z)
e26(f12(w, w), x, y, z, f22(w, w), w) -> e312(x, y, x, y, y, z, y, z, x, y, z, w)
e26(x, x, y, z, z, a) -> e63(x, y, z)
e26(i, x, y, z, i, a) -> e63(x, y, z)
e312(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z, w) -> e412(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z, w)
e312(x, y, x, y, y, z, y, z, x, y, z, a) -> e63(x, y, z)
e412(g12(w, w), x1, g22(w, w), x1, g12(w, w), x1, g22(w, w), x1, x, y, z, w) -> e16(x1, x1, x, y, z, w)
e412(i, x1, i, x1, i, x1, i, x1, x, y, z, a) -> e54(x1, x, y, z)
e412(x, x, x, x, x, x, x, x, x, x, x, a) -> e63(x, x, x)
e54(i, x, y, z) -> e63(x, y, z)
Q is empty.
Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
G22(x, a) -> H21(x)
E412(g12(w, w), x1, g22(w, w), x1, g12(w, w), x1, g22(w, w), x1, x, y, z, w) -> E16(x1, x1, x, y, z, w)
E412(i, x1, i, x1, i, x1, i, x1, x, y, z, a) -> E54(x1, x, y, z)
F12(x, a) -> G22(x, x)
G12(x, a) -> H21(x)
E16(h11(w), h21(w), x, y, z, w) -> E26(x, x, y, z, z, w)
E26(f12(w, w), x, y, z, f22(w, w), w) -> E312(x, y, x, y, y, z, y, z, x, y, z, w)
E312(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z, w) -> E412(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z, w)
F22(a, x) -> G12(x, x)
G22(a, x) -> H11(x)
F12(a, x) -> G12(x, x)
F22(x, a) -> G22(x, x)
G12(a, x) -> H11(x)
E16(x1, x1, x, y, z, a) -> E54(x1, x, y, z)
The TRS R consists of the following rules:
f12(a, x) -> g12(x, x)
f12(x, a) -> g22(x, x)
f22(a, x) -> g12(x, x)
f22(x, a) -> g22(x, x)
g12(a, x) -> h11(x)
g12(x, a) -> h21(x)
g22(a, x) -> h11(x)
g22(x, a) -> h21(x)
h11(a) -> i
h21(a) -> i
e16(h11(w), h21(w), x, y, z, w) -> e26(x, x, y, z, z, w)
e16(x1, x1, x, y, z, a) -> e54(x1, x, y, z)
e26(f12(w, w), x, y, z, f22(w, w), w) -> e312(x, y, x, y, y, z, y, z, x, y, z, w)
e26(x, x, y, z, z, a) -> e63(x, y, z)
e26(i, x, y, z, i, a) -> e63(x, y, z)
e312(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z, w) -> e412(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z, w)
e312(x, y, x, y, y, z, y, z, x, y, z, a) -> e63(x, y, z)
e412(g12(w, w), x1, g22(w, w), x1, g12(w, w), x1, g22(w, w), x1, x, y, z, w) -> e16(x1, x1, x, y, z, w)
e412(i, x1, i, x1, i, x1, i, x1, x, y, z, a) -> e54(x1, x, y, z)
e412(x, x, x, x, x, x, x, x, x, x, x, a) -> e63(x, x, x)
e54(i, x, y, z) -> e63(x, y, z)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
G22(x, a) -> H21(x)
E412(g12(w, w), x1, g22(w, w), x1, g12(w, w), x1, g22(w, w), x1, x, y, z, w) -> E16(x1, x1, x, y, z, w)
E412(i, x1, i, x1, i, x1, i, x1, x, y, z, a) -> E54(x1, x, y, z)
F12(x, a) -> G22(x, x)
G12(x, a) -> H21(x)
E16(h11(w), h21(w), x, y, z, w) -> E26(x, x, y, z, z, w)
E26(f12(w, w), x, y, z, f22(w, w), w) -> E312(x, y, x, y, y, z, y, z, x, y, z, w)
E312(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z, w) -> E412(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z, w)
F22(a, x) -> G12(x, x)
G22(a, x) -> H11(x)
F12(a, x) -> G12(x, x)
F22(x, a) -> G22(x, x)
G12(a, x) -> H11(x)
E16(x1, x1, x, y, z, a) -> E54(x1, x, y, z)
The TRS R consists of the following rules:
f12(a, x) -> g12(x, x)
f12(x, a) -> g22(x, x)
f22(a, x) -> g12(x, x)
f22(x, a) -> g22(x, x)
g12(a, x) -> h11(x)
g12(x, a) -> h21(x)
g22(a, x) -> h11(x)
g22(x, a) -> h21(x)
h11(a) -> i
h21(a) -> i
e16(h11(w), h21(w), x, y, z, w) -> e26(x, x, y, z, z, w)
e16(x1, x1, x, y, z, a) -> e54(x1, x, y, z)
e26(f12(w, w), x, y, z, f22(w, w), w) -> e312(x, y, x, y, y, z, y, z, x, y, z, w)
e26(x, x, y, z, z, a) -> e63(x, y, z)
e26(i, x, y, z, i, a) -> e63(x, y, z)
e312(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z, w) -> e412(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z, w)
e312(x, y, x, y, y, z, y, z, x, y, z, a) -> e63(x, y, z)
e412(g12(w, w), x1, g22(w, w), x1, g12(w, w), x1, g22(w, w), x1, x, y, z, w) -> e16(x1, x1, x, y, z, w)
e412(i, x1, i, x1, i, x1, i, x1, x, y, z, a) -> e54(x1, x, y, z)
e412(x, x, x, x, x, x, x, x, x, x, x, a) -> e63(x, x, x)
e54(i, x, y, z) -> e63(x, y, z)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 10 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
E412(g12(w, w), x1, g22(w, w), x1, g12(w, w), x1, g22(w, w), x1, x, y, z, w) -> E16(x1, x1, x, y, z, w)
E16(h11(w), h21(w), x, y, z, w) -> E26(x, x, y, z, z, w)
E26(f12(w, w), x, y, z, f22(w, w), w) -> E312(x, y, x, y, y, z, y, z, x, y, z, w)
E312(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z, w) -> E412(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z, w)
The TRS R consists of the following rules:
f12(a, x) -> g12(x, x)
f12(x, a) -> g22(x, x)
f22(a, x) -> g12(x, x)
f22(x, a) -> g22(x, x)
g12(a, x) -> h11(x)
g12(x, a) -> h21(x)
g22(a, x) -> h11(x)
g22(x, a) -> h21(x)
h11(a) -> i
h21(a) -> i
e16(h11(w), h21(w), x, y, z, w) -> e26(x, x, y, z, z, w)
e16(x1, x1, x, y, z, a) -> e54(x1, x, y, z)
e26(f12(w, w), x, y, z, f22(w, w), w) -> e312(x, y, x, y, y, z, y, z, x, y, z, w)
e26(x, x, y, z, z, a) -> e63(x, y, z)
e26(i, x, y, z, i, a) -> e63(x, y, z)
e312(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z, w) -> e412(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z, w)
e312(x, y, x, y, y, z, y, z, x, y, z, a) -> e63(x, y, z)
e412(g12(w, w), x1, g22(w, w), x1, g12(w, w), x1, g22(w, w), x1, x, y, z, w) -> e16(x1, x1, x, y, z, w)
e412(i, x1, i, x1, i, x1, i, x1, x, y, z, a) -> e54(x1, x, y, z)
e412(x, x, x, x, x, x, x, x, x, x, x, a) -> e63(x, x, x)
e54(i, x, y, z) -> e63(x, y, z)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.